Answer:
Option D
Explanation:
Given,
Total wall area (including the lid) (A)=1.0 cm2
Thickness of wall(l)=3 cm= $3 \times 10^{-2} m$
Average temperature outside the box = $30^{0}C$
$\triangle \theta =30-0= 30^{0}C$
$L_{fusion (ice)}=3 \times 10^{5} J/kg$
$K_{thermocol}=0.03 W/m K$
We know that,
$\frac{Q}{t}=\frac{KA}{l} \triangle Q$
For one day, t=24 x 60 x 60 s
$\frac{ m \times L_{fusion (ice)}}{t}=\frac{KA}{l} \triangle Q$
$\frac{m\times3\times 10^{5}}{24\times60\times60}=\frac{0.03\times1}{3\times 10^{-2}}\times30$
$m=\frac{0.03\times1 \times30\times24\times 60\times60}{3\times 10^{-2}\times3\times10^{5}}$
$m= \frac{77760}{9000}$= 8.64 kg